Folding thermodynamics of model four-strand antiparallel beta-sheet proteins.
نویسندگان
چکیده
The thermodynamic properties for three different types of off-lattice four-strand antiparallel beta-strand protein models interacting via a hybrid Go-type potential have been investigated. Discontinuous molecular dynamic simulations have been performed for different sizes of the bias gap g, an artificial measure of a model protein's preference for its native state. The thermodynamic transition temperatures are obtained by calculating the squared radius of gyration R(g)(2), the root-mean-squared pair separation fluctuation Delta(B), the specific heat C(v), the internal energy of the system E, and the Lindemann disorder parameter Delta(L). Despite these models' simplicity, they exhibit a complex set of protein transitions, consistent with those observed in experimental studies on real proteins. Starting from high temperature, these transitions include a collapse transition, a disordered-to-ordered globule transition, a folding transition, and a liquid-to-solid transition. The high temperature transitions, i.e., the collapse transition and the disordered-to-ordered globule transition, exist for all three beta-strand proteins, although the native-state geometry of the three model proteins is different. However the low temperature transitions, i.e., the folding transition and the liquid-to-solid transition, strongly depend on the native-state geometry of the model proteins and the size of the bias gap.
منابع مشابه
Length-dependent stability and strand length limits in antiparallel beta -sheet secondary structure.
Designed peptides that fold autonomously to specific conformations in aqueous solution are useful for elucidating protein secondary structural preferences. For example, autonomously folding model systems have been essential for establishing the relationship between alpha-helix length and alpha-helix stability, which would be impossible to probe with alpha-helices embedded in folded proteins. He...
متن کاملDiscovery of a significant, nontopological preference for antiparallel alignment of helices with parallel regions in sheets.
To help elucidate the role of secondary structure packing preferences in protein folding, here we present an analysis of the packing geometry observed between alpha-helices and between alpha-helices and beta-sheets in 1316 diverse, nonredundant protein structures. Finite-length vectors were fit to the alpha-carbon atoms in each of the helices and strands, and the packing angle between the vecto...
متن کاملAnalysis of the factors that stabilize a designed two-stranded antiparallel beta-sheet.
Autonomously folding beta-hairpins (two-strand antiparallel beta-sheets) have become increasingly valuable tools for probing the forces that control peptide and protein conformational preferences. We examine the effects of variations in sequence and solvent on the stability of a previously designed 12-residue peptide (1). This peptide adopts a beta-hairpin conformation containing a two-residue ...
متن کاملFolding simulations of a three-stranded antiparallel beta -sheet peptide.
Protein folding is a grand challenge of the postgenomic era. In this paper, 58 folding events sampled during 47 molecular dynamics trajectories for a total simulation time of more than 4 micros provide an atomic detail picture of the folding of a 20-residue synthetic peptide with a stable three-stranded antiparallel beta-sheet fold. The simulations successfully reproduce the NMR solution confor...
متن کاملAnalysis of the factors that stabilize a designed two-stranded antiparallel -sheet
Autonomously folding -hairpins (two-strand antiparallel -sheets) have become increasingly valuable tools for probing the forces that control peptide and protein conformational preferences. We examine the effects of variations in sequence and solvent on the stability of a previously designed 12-residue peptide (1). This peptide adopts a -hairpin conformation containing a two-residue loop (D-Pro-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 82 2 شماره
صفحات -
تاریخ انتشار 2002